ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Stephen M. Bajorek, Michael Y. Young
Nuclear Technology | Volume 132 | Number 3 | December 2000 | Pages 375-388
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT00-A3151
Articles are hosted by Taylor and Francis Online.
During the blowdown phase of a large-break loss-of-coolant accident (LOCA), high-powered regions of a nuclear reactor core exceed the critical heat flux, and peak-cladding temperatures (PCTs) in the range from 1033 to 1255°C (1400 to 1800°F) can occur before high flow rates terminate the temperature rise. Following the blowdown PCT, the core is cooled by a dispersed droplet flow at moderately high pressures. Heat transfer during this blowdown cooling period removes a significant portion of stored energy from the core and can lead to quench. Energy removal during this period is an important feature in the AP600 advanced passive plant design because the design includes good communication between the core and water in the reactor vessel upper head.For realistic LOCA calculations performed according to the revised 10 CFR 50.46 regulation using the code scaling, applicability, and uncertainty methodology, it becomes necessary to quantify those physical processes that have a dominant effect on the transient. Blowdown cooling heat transfer determines the initial condition of the core at the start of reflood and thus is a major contributor to the propagation of uncertainty in later periods of the transient.The approved Westinghouse best-estimate LOCA methodology uses the WCOBRA/TRAC-MOD7A code to predict the large-break LOCA transient. Quantification of blowdown cooling heat transfer coefficients (HTCs) was performed by development of a driver-plotter routine based on the WCOBRA/TRAC heat transfer package. Known fluid conditions corresponding to experimental data were then used to generate predictions of blowdown cooling HTCs. A distribution, developed from comparisons to several experimental tests, of predicted versus measured HTCs shows the average bias and uncertainty in the heat transfer package.Based on driver-plotter routine calculations of blowdown HTCs measured in the Oak Ridge National Laboratory blowdown tests and Idaho National Engineering Laboratory high-pressure single-tube tests, a new correlation for direct-contact heat transfer is proposed. Use of the new model was found to provide significantly improved agreement between predicted and measured HTCs.