ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reboot: Nuclear needs a success . . . anywhere
The media have gleefully resurrected the language of a past nuclear renaissance. Beyond the hype and PR, many people in the nuclear community are taking a more measured view of conditions that could lead to new construction: data center demand, the proliferation of new reactor designs and start-ups, and the sudden ascendance of nuclear energy as the power source everyone wants—or wants to talk about.
Once built, large nuclear reactors can provide clean power for at least 80 years—outlasting 10 to 20 presidential administrations. Smaller reactors can provide heat and power outputs tailored to an end user’s needs. With all the new attention, are we any closer to getting past persistent supply chain and workforce issues and building these new plants? And what will the election of Donald Trump to a second term as president mean for nuclear?
As usual, there are more questions than answers, and most come down to money. Several developers are engaging with the Nuclear Regulatory Commission or have already applied for a license, certification, or permit. But designs without paying customers won’t get built. So where are the customers, and what will it take for them to commit?
Kirk Drumheller
Nuclear Technology | Volume 24 | Number 3 | December 1974 | Pages 418-424
Technical Paper | Radioactive Waste | doi.org/10.13182/NT74-A31505
Articles are hosted by Taylor and Francis Online.
If a stable non-Earth intercept trajectory or orbit can be assured, extraterrestrial disposal offers the complete removal of long-lived nuclear waste constituents from Earth. The primary unfavorable features are that the concept deals with only part of the waste; possible launch safety problems exist, retrievability and monitoring are difficult, and the concept will require international agreements. Extraterrestrial disposal of the total waste constituents and of only the transuranic elements were considered. However, space disposal of the transuranics only is believed to be the most practical scheme, primarily because of the very high space transport cost per unit of weight. The implementation of space disposal of transuranic waste could be achieved with current technology. This technology is considered to include the space shuttle and the space tug, advanced vehicles that use existing engineering technology. The safety aspects for space disposal primarily include safety during launch and control of the extraterrestrial destination of the waste constituents. The potential for an abort that could cause a release of radionuclides during any one space launching is modestly high; however, relatively small amounts of waste constituents are associated with each launch; and package integrity is high even in an abort. The major energy consumption in space disposal is for propelling the waste to its final destination. This energy consumption for disposal of actinide waste is about 4 to 5 orders of magnitude less than the electrical energy from the original nuclear fuel, depending on the final space destination.