ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
2024: The Year in Nuclear—April through June
Another calendar year has passed. Before heading too far into 2025, let’s look back at what happened in 2024 in the nuclear community. In today's post, compiled from Nuclear News and Nuclear Newswire are what we feel are the top nuclear news stories from April through May 2024.
Stay tuned for the top stories from the rest of the past year.
Larry G. Blackwood, Yale D. Harker
Nuclear Technology | Volume 132 | Number 3 | December 2000 | Pages 366-374
Technical Paper | Reactor Safety | doi.org/10.13182/NT00-A3150
Articles are hosted by Taylor and Francis Online.
Current nuclear criticality safety limit requirements for transporting TRUPACT-II waste containers to the U.S. Department of Energy's Waste Isolation Pilot Plant (WIPP) specify that the 239Pu fissile gram equivalent (FGE) plus two times its measurement error must be 325 g for a payload of fourteen 55-gal drums. The authorized method for calculating a TRUPACT-II FGE measurement error value is to take the square root of the sum of the squared error values for the individual containers (often called root-sum-squares or simply RSS). However, to the extent that the individual drum measurements contain common bias effects (e.g., due to common calibration or other adjustment factors), the corresponding measurement errors are correlated, and simple RSS calculations will underestimate the true error in the TRUPACT-II FGE value.The RSS calculations assume independence, while common bias effects can induce strong correlations between the errors in measurements. Significant bias effects can occur when the matrix characteristics for a particular waste type are not fully accounted for in the measurement process. Depending on the relative size of the bias error compared to precision error, the true measurement error can be greater than twice that calculated by RSS. In such cases, the FGE shipping requirement may not be met. To avoid underestimating the error, bias components should be estimated and propagated separately (combined only at the final step in the TRUPACT-II FGE calculation), or the effect of bias on covariance between measurements must be calculated. These covariance terms then need to be included in the final uncertainty calculations.