ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Joon-Eon Yang, Tae-Yong Sung, Youngho Jin
Nuclear Technology | Volume 132 | Number 3 | December 2000 | Pages 352-365
Technical Paper | Reactor Safety | doi.org/10.13182/NT00-A3149
Articles are hosted by Taylor and Francis Online.
Up to now, the optimization of surveillance test intervals (STIs) is performed at the system level. In other words, the STI of a system is optimized considering only the conditions related to that system. For instance, the STI of an emergency diesel generator (EDG) is determined considering only the availability of an EDG and the costs related to the changed STI. However, such an approach can cause problems when the effects of each system's optimized STI are combined. That is, the core damage frequency can increase to a level that cannot be accepted by the regulatory body when the STIs optimized at the system level are all adopted together. In this paper, STIs of the systems are optimized at the plant level based on the simplified probabilistic safety assessment (PSA) model of a pressurized water reactor. The PSA model includes most of the important safety systems. It is a nonlinear and multimodal optimization problem with constraints that it optimizes the STIs of various systems based on the PSA model at the plant level. Most conventional optimization techniques have difficulties in handling such multimodal and nonlinear optimization problems. Therefore, we applied a genetic algorithm to the optimization of STIs. The genetic algorithms guarantee the global optimum and find the solution very effectively. In addition, the fault trees used in PSA have some limitations in representing the real world; i.e., in estimating the unavailability of standby systems and the effects of maintenance strategies. So, the analytical unavailability model is implemented to overcome such limits of the conventional fault tree approach. The analytical unavailability model enables us to accurately estimate the effect of a maintenance strategy on the unavailability of systems. The optimized STIs based on the conventional fault tree and the analytical unavailability model are compared.