ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
World Bank, IAEA partner to fund nuclear energy
The World Bank and the International Atomic Energy Agency signed an agreement last week to cooperate on the construction and financing of advanced nuclear projects in developing countries, marking the first partnership since the bank ended its ban on funding for nuclear energy projects.
K. N. Prasad, W. A. Jester, F. J. Remick
Nuclear Technology | Volume 24 | Number 2 | November 1974 | Pages 252-259
Technical Paper | Analysis | doi.org/10.13182/NT74-A31481
Articles are hosted by Taylor and Francis Online.
Post-cutting chip activation analysis has been developed for the study of tool wear. In this technique, chips produced during machining are analyzed by neutron activation for a tracer that occurs in the tool. Tungsten was used as a tracer that was inherently present in the tool, and europium was used as a tracer that was added to the tool during its production. It was found that europium fails to effectively meet all the requirements of a tracer in the tool. By using the tungsten in high-speed steel tools and Ti—6Al—4 V alloy work material, it was shown that (a) a random selection of chips was ineffective in providing useful tool wear information and (b) the traditionally ignored break-in period of tool wear could be used to predict tool life to within the same margin of error as conventional methods, but with potential savings in time and cost.