ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
J.-J. Huet, V. Leroy+
Nuclear Technology | Volume 24 | Number 2 | November 1974 | Pages 216-224
Technical Paper | Material | doi.org/10.13182/NT74-A31476
Articles are hosted by Taylor and Francis Online.
Dispersion-strengthened ferritic steels are being studied for possible use as canning material for sodium-cooled fast reactors. The basic alloy chosen contains nominally Fe—13% Cr—1.5% Mo— 3.5% Ti to which 2% TiO2 or 1% Y2O3 is added by a powder metallurgy technique. At 700°C, the alloys studied can favorably be compared in stress rupture tests (up to 12 000 h) to the best austenitic steels. Corrosion tests in dynamic sodium at 700°C showed that after 4 000 h the affected zones remained narrow and had no significant influence on the mechanical resistance at high temperature. Neutron irradiation of these alloys demonstrated their remarkable resistance to embrittlement in mechanical tests at 700°C. Comparison with other alloys showed that they had the highest elongation to rupture after irradiation. Simulation tests by 1-MeV electrons gave almost zero swelling in the temperature range of 475 to 700°C. The combined properties of dispersion-strengthened ferritic alloys make them excellent candidates not only for canning material but also for shroud tubes for fast-reactor fuel elements.