ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
J. W. Dias, D. Okrent, R. C. Erdmann
Nuclear Technology | Volume 24 | Number 1 | October 1974 | Pages 20-32
Technical Paper | Reactor | doi.org/10.13182/NT74-A31458
Articles are hosted by Taylor and Francis Online.
An explanation was sought to explain the existence of the relatively large (∼2000 Å) fission gas bubbles found in the unrestructured region of an EBR-II-irradiated mixed-oxide pin following a TREAT transient in which peak temperatures stayed below melting. Using a code like GRASS, it was found difficult to explain their existence by employing the bubble mobility values fit to experimental measurements in the region of 1500°C. A rather good fit was obtained if the greater bubble mobility that theory gives for the surface-diffusion mechanism was assumed to be applicable at higher temperatures; e.g., above 1800°C. Sensitivity studies showed that swelling is very sensitive to peak temperatures and the duration of the transient and to hydrostatic pressures in the fuel. If the surface-diffusion mechanism is applicable, considerable fuel swelling can occur due to bubble growth and coalescence. In addition, bubble drift due to temperature gradient is found to equal or exceed the effects of Brownian motion.