ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Candidates for leadership provide statements: ANS Board of Directors
With the annual ANS election right around the corner, American Nuclear Society members will be going to the polls to vote for a vice president/president-elect, treasurer, and members-at-large for the Board of Directors. In January, Nuclear News published statements from candidates for vice president/president-elect and treasurer. This month, we are featuring statements from each nominee for the Board of Directors.
J. W. Dias, D. Okrent, R. C. Erdmann
Nuclear Technology | Volume 24 | Number 1 | October 1974 | Pages 20-32
Technical Paper | Reactor | doi.org/10.13182/NT74-A31458
Articles are hosted by Taylor and Francis Online.
An explanation was sought to explain the existence of the relatively large (∼2000 Å) fission gas bubbles found in the unrestructured region of an EBR-II-irradiated mixed-oxide pin following a TREAT transient in which peak temperatures stayed below melting. Using a code like GRASS, it was found difficult to explain their existence by employing the bubble mobility values fit to experimental measurements in the region of 1500°C. A rather good fit was obtained if the greater bubble mobility that theory gives for the surface-diffusion mechanism was assumed to be applicable at higher temperatures; e.g., above 1800°C. Sensitivity studies showed that swelling is very sensitive to peak temperatures and the duration of the transient and to hydrostatic pressures in the fuel. If the surface-diffusion mechanism is applicable, considerable fuel swelling can occur due to bubble growth and coalescence. In addition, bubble drift due to temperature gradient is found to equal or exceed the effects of Brownian motion.