ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Mohamed S. El-Genk, Hamed H. Saber
Nuclear Technology | Volume 132 | Number 2 | November 2000 | Pages 290-308
Technical Paper | Decontamination/Decommissioning | doi.org/10.13182/NT00-A3145
Articles are hosted by Taylor and Francis Online.
Recent experiments have shown that radio-frequency (rf) plasma glow discharge using NF3 gas is an effective technique for the removal of uranium oxide from metal surfaces. The results of these experiments are analyzed to explain the measured dependence of the UO2 removal or etch rate on the NF3 gas pressure and the absorbed power in the plasma. The NF3 gas pressure in the experiments was varied from 10.8 to 40 Pa, and the deposited power in the plasma was varied from 25 to 210 W. The UO2 etch rate was strongly dependent on the absorbed power and, to a lesser extent, on the NF3 pressure and decreased exponentially with immersion time. At 210 W and 17 Pa, all detectable UO2 in the samples (~10.6 mg each) was removed at the endpoint, whereas the initial etch rate was ~3.11 m/min. When the absorbed power was 50 W, however, the etch rate was initially ~0.5 g/min and almost zero at the endpoint, with UO2 only partially etched. This self-limiting etching of UO2 at low power is attributed to the formation of nonvolatile intermediates UF2, UF3, UF4, UF5, UO2F, and UO2F2 on the surface. Analysis indicated that the accumulation of UF6 and, to a lesser extent, O2 near the surface partially contributed to the exponential decrease in the UO2 etch rate with immersion time. Unlike fluorination with F2 gas, etching of UO2 using rf glow discharge is possible below 663 K. The average etch rates of the amorphous UO2 in the NF3 experiments are comparable to the peak values reported in other studies for crystalline UO2 using CF4/O2 glow discharge performed at ~150 to 250 K higher sample temperatures.