ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Mohamed S. El-Genk, Hamed H. Saber
Nuclear Technology | Volume 132 | Number 2 | November 2000 | Pages 290-308
Technical Paper | Decontamination/Decommissioning | doi.org/10.13182/NT00-A3145
Articles are hosted by Taylor and Francis Online.
Recent experiments have shown that radio-frequency (rf) plasma glow discharge using NF3 gas is an effective technique for the removal of uranium oxide from metal surfaces. The results of these experiments are analyzed to explain the measured dependence of the UO2 removal or etch rate on the NF3 gas pressure and the absorbed power in the plasma. The NF3 gas pressure in the experiments was varied from 10.8 to 40 Pa, and the deposited power in the plasma was varied from 25 to 210 W. The UO2 etch rate was strongly dependent on the absorbed power and, to a lesser extent, on the NF3 pressure and decreased exponentially with immersion time. At 210 W and 17 Pa, all detectable UO2 in the samples (~10.6 mg each) was removed at the endpoint, whereas the initial etch rate was ~3.11 m/min. When the absorbed power was 50 W, however, the etch rate was initially ~0.5 g/min and almost zero at the endpoint, with UO2 only partially etched. This self-limiting etching of UO2 at low power is attributed to the formation of nonvolatile intermediates UF2, UF3, UF4, UF5, UO2F, and UO2F2 on the surface. Analysis indicated that the accumulation of UF6 and, to a lesser extent, O2 near the surface partially contributed to the exponential decrease in the UO2 etch rate with immersion time. Unlike fluorination with F2 gas, etching of UO2 using rf glow discharge is possible below 663 K. The average etch rates of the amorphous UO2 in the NF3 experiments are comparable to the peak values reported in other studies for crystalline UO2 using CF4/O2 glow discharge performed at ~150 to 250 K higher sample temperatures.