ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
J. C. Wood
Nuclear Technology | Volume 23 | Number 1 | July 1974 | Pages 63-79
Technical Paper | Material | doi.org/10.13182/NT74-A31434
Articles are hosted by Taylor and Francis Online.
Various zirconium alloys have been exposed to iodine vapor at 300°C under static tensile stress and marked differences in their cracking behaviors were observed. Some alloys that resisted cracking in iodine before irradiation became susceptible after receiving neutron fluences exceeding 2 × 1024n/m2, (E > 1 MeV) in the proximity of UO2 fuel but not after irradiation to higher fluences in air. Control tests showed that fission products adhering to or implanted into the surfaces of irradiated tubing did not cause cracking in the absence of deliberately added iodine. Experiments confirmed the strong influence of residual stresses on the cracking of cold drawn unirradiated tubes under static applied stress. Treatments that decreased the tensile residual stresses (roller straightening, shot peening, and irradiation to a low fluence of fast neutrons) reduced the likelihood of stress corrosion cracking in iodine vapor. After Zircaloy has reacted chemically with iodine, the Zircaloy picks up hydrogen rapidly. It was also observed that hydrided Zircaloy has a higher resistance to iodine-induced cracking than unhy-drided Zircaloy. Surface coatings of graphite and baked poly-dimethyl-siloxane grease that protect Zircaloy from iodine attack have been tested and are discussed here.