ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
D. Guarino, V. Marinelli, L. Pastori
Nuclear Technology | Volume 23 | Number 1 | July 1974 | Pages 38-52
Technical Paper | Fuel | doi.org/10.13182/NT74-A31432
Articles are hosted by Taylor and Francis Online.
Most published steady-state burnout experimental data on BWR square geometry rod bundles at 70 kg/cm2 were analyzed and compared with the main calculation methods, in order to examine the state-of-the-art in burnout power predictions. The calculations were performed using two system parameter correlations—Barnett and Macbeth, a local condition correlation—Becker, and two hydrodynamic condition correlations—CISE-III and ACHAB. Furthermore, a selected number of representative cases were calculated by means of LEUCIPPO and COBRA-II subchannel codes, in which the Becker correlations for annuli and round tubes were applied to the peripheral and central subchannels, respectively. The comparisons showed that Becker and ACHAB methods predict the burnout powers with rms errors lower than 10%, while the subchannel analysis (applied neglecting the void drift) yields errors of 20 to 25%.