The current pace of development of laser-driven fusion together with the urgency of providing sources of safe, clean, low-cost electrical energy have prompted consideration of the major materials problems that must be solved before practical laser fusion can be realized. Many of the materials problems associated with laser fusion are common also to magnetically confined fusion reactors. These include the degradation in physical and mechanical properties of structural materials from neutron irradiation and the formation of interstitial gas, problems related to the use of lithium as a reactor coolant, and the necessity to breed tritium for use in the fuel cycle. Some materials problems are unique to laser fusion. Laser-beam transport requires the use of windows and mirrors that may be damaged by intense laser light. Cyclic stresses imposed on reactor-cavity and blanket-region wall structures accentuate the importance of radiation-induced changes in elastic moduli of structural materials.