ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
2024: The Year in Nuclear—April through June
Another calendar year has passed. Before heading too far into 2025, let’s look back at what happened in 2024 in the nuclear community. In today's post, compiled from Nuclear News and Nuclear Newswire are what we feel are the top nuclear news stories from April through May 2024.
Stay tuned for the top stories from the rest of the past year.
Thomas D. Radcliff, Don W. Miller, Andrew C. Kauffman
Nuclear Technology | Volume 132 | Number 2 | November 2000 | Pages 240-255
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT00-A3142
Articles are hosted by Taylor and Francis Online.
Reactor thermal limits are based on fuel energy deposition and cladding temperature. This paper presents a two-wire in-core instrument that directly measures fuel energy deposition. The instrument is based on the addition of heat through resistive dissipation of input electrical energy to a small mass of reactor fuel or fuel analogue. A feedback loop controls the input electrical energy needed to maintain the fuel mass at a nearly constant temperature regardless of the nuclear energy deposited in the mass. Energy addition to the fuel and fuel temperature feedback to the controller are provided by a resistive heating element embedded in the fuel mass. As long as the external heat transfer environment remains constant, the input electrical energy is inversely related to the actual nuclear energy deposition. To demonstrate this instrument, we first scaled the sensor and controller parameters and then used the results to guide fabrication of prototype instruments. In-reactor testing was performed to measure the instrument sensitivity, linearity, bandwidth, and long-term drift characteristics of the prototypes. The instrument is shown to be capable of high-sensitivity, linear measurement of fuel energy deposition with sufficient bandwidth for safety-related measurements. It is also clear that a means to compensate the sensor for changes in the external heat transfer environment is required. Means of actively measuring heat losses and performing this compensation are discussed.