ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
N. R. Chellew, W. E. Miller, R. W. Kessie, C. C. McPheeters, P. A. Nelson
Nuclear Technology | Volume 21 | Number 2 | February 1974 | Pages 125-132
Technical Paper | Instrument | doi.org/10.13182/NT74-A31368
Articles are hosted by Taylor and Francis Online.
Work has been completed to demonstrate the feasibility of a new cladding-failure monitoring technique based on determination of the 135I content of the primary sodium coolant of Liquid Metal Fast Breeder Reactors (LMFBRs). The method was devised to aid in detecting the penetration of fuel element cladding by sodium coolant. The method consists of isolating a small volume of primary sodium, sparging it with an inert gas to strip out dissolved gases which are discarded, further sparging the sample to strip 135mXe produced by 135I decay, and calculating the 135I content of the sodium from the 135mXe content of the second sparge. A sparging monitor was built and tested to determine the time required to sparge dissolved radioxenon (133Xe) from molten sodium. This time varied from ∼1 to 1.5 min, depending on experimental conditions. For the calculated background level of 135I in the primary sodium of Experimental Breeder Reactor II, a counting time of ∼2 min would be required to determine the amount of 135mXe removed by the second sparging to a 1σ counting precision of ±4%. A shorter counting time would be required for higher 135mXe levels that would occur during fuel failure. A system with automatic controls was designed for monitoring 135I in the primary sodium of an LMFBR.