ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Blades-in turbine inspections at Quad Cities set new benchmark for Constellation
When Constellation decided to install replacement Alstom low-pressure turbines at three of its boiling water reactor plants more than 15 years ago, one benefit was knowing the new turbines should operate reliably—and without major inspections—for several years.
C. L. Schuske, S. J. Altschuler
Nuclear Technology | Volume 19 | Number 2 | August 1973 | Pages 84-95
Technical Paper | Chemical Processing | doi.org/10.13182/NT73-A31323
Articles are hosted by Taylor and Francis Online.
A model has been developed for calculating critically safe storage arrays of cylindrical vessels containing water/fissile oxide mixtures of PuO2 (96% 239Pu and 4% 240Pu) or UO2 (93.4% 235U and 6.6% 238U). It was assumed that these arrays were in air surrounded by a 12-in.-thick concrete vault. This model uses the concepts of surface density and unit surface-to-volume ratio to define safe array parameters. The model handles fissile densities ranging from that of the theoretical crystal down to ∼1kg/liter and containers whose shapes range from 300-cm-high thin cylinders to flat slab-shaped containers. Correction factors for dry oxide storage at various densities have also been developed for the cases where water can be prevented from entering the oxide containers. A considerably greater weight of oxide can be stored when water can be precluded. The effect of several inches of water on the concrete floor lowers keff ∼3%. (The units are assumed to be at least 12 in. above the floor.)