ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
DNFSB spots possible bottleneck in Hanford’s waste vitrification
Workers change out spent 27,000-pound TSCR filter columns and place them on a nearby storage pad during a planned outage in 2023. (Photo: DOE)
While the Department of Energy recently celebrated the beginning of hot commissioning of the Hanford Site’s Waste Treatment and Immobilization Plant (WTP), which has begun immobilizing the site’s radioactive tank waste in glass through vitrification, the Defense Nuclear Facilities Safety Board has reported a possible bottleneck in waste processing. According to the DNFSB, unless current systems run efficiently, the issue could result in the interruption of operations at the WTP’s Low-Activity Waste Facility, where waste vitrification takes place.
During operations, the LAW Facility will process an average of 5,300 gallons of tank waste per day, according to Bechtel, the contractor leading design, construction, and commissioning of the WTP. That waste is piped to the facility after being treated by Hanford’s Tanks Side Cesium Removal (TSCR) system, which filters undissolved solid material and removes cesium from liquid waste.
According to a November 7 activity report by the DNFSB, the TSCR system may not be able to produce waste feed fast enough to keep up with the LAW Facility’s vitrification rate.
J. R. DiStefano, K. H. Lin
Nuclear Technology | Volume 19 | Number 1 | July 1973 | Pages 34-45
Technical Paper | Material | doi.org/10.13182/NT73-A31316
Articles are hosted by Taylor and Francis Online.
The power density of 244Cm2O3 makes it an attractive fuel form for a variety of radioisotopic applications. To evaluate the compatibility of 244Cm2O3 with refractory metals for high-tem-perature applications, Ta, Ta - 10 wt% W, T-111, Mo, TZM, W, and W- 26 wt% Re were tested at 1650 and 1850°C, and Nb, Nb -1 wt% Zr, Ta, Ta- 10 wt% W, Mo, V, and Zr were tested at 1250°C for times up to 10 000 h. Serious reactions of 244Cm2O3 with Zr occurred at 1250°C and with Ta - 10 wt% W and T-111 at 1650°C. At both 1250 and 1650°C, the remaining materials showed good resistance to 244Cm2O3 with only limited attack, mainly in the form of shallow intergranular subsurface voids. At 1850°C, there was evidence of dissolution of tantalum and the tantalum alloys by 244Cm2O3. After 5000 and 10 000 h, tantalum had transferred from one portion of the capsule to another, and tantalum particles were found in the fuel. Less extensive mass transfer was noted with the other materials, although significant amounts of tungsten from the unalloyed tungsten and W - 26 wt% Re tests were found in the fuel.