ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
C. L. Schuske, S. J. Altschuler
Nuclear Technology | Volume 18 | Number 3 | June 1973 | Pages 305-311
Technical Note | Chemical Processing | doi.org/10.13182/NT73-A31303
Articles are hosted by Taylor and Francis Online.
A fissile solution storage vessel has been designed and analyzed which consists of a central column surrounded by intersecting arms resembling a tree with many branches. The intersecting arms are reduced at their junction with the central column to minimize the amount of surface area of an arm (which contains most of the stored liquid) in contact with the central column. Critical experiments and calculations done at Rocky Flats have shown that this area of intersection is very reactive. If this area of intersection is reduced, it is possible to increase the numbers and diameters of the arms, thus allowing more fissile material to be stored in this geometry. This method of solution storage is cost competitive with the use of borosilicate-raschig-ring-filled tanks for the storage of large quantities of fissile materials for special applications. Several such applications are storage of solutions corrosive to glass raschig rings, solutions where inorganic plutonium polymer (PuO2 × H2O) buildup is possible and plutonium solutions in excess of 220-g Pu/liter. The tree tank can safely store 400-g Pu/liter, whereas the limiting concentration for raschig ring tanks is 220-g Pu/liter. For this particular application, the initial cost per kilogram for Pu storage is ∼$53/kg for the tree versus ∼$ 56/kg for the raschig ring tank. If one considers the cost of maintenance of the two methods over a period of five to ten years, the tree tank is competitive over an even wider range of applications.