ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
D. W. Brite
Nuclear Technology | Volume 18 | Number 2 | May 1973 | Pages 87-96
Technical Paper | A Review of Plutonium Utilization in Thermal Reactors / Reactor | doi.org/10.13182/NT73-A31280
Articles are hosted by Taylor and Francis Online.
The U.S. Atomic Energy Commission is developing general design criteria for plutonium processing and fabrication plants. In the meantime, an Atomic Energy Commission review of proposed sites and design plans for such facilities is required prior to the start of construction. The design of most new plutonium facilities today anticipates a reduction in the maximum permissible personnel radiation exposure from the present 5 rem/yr to 1 rem/yr. Plutonium-uranium mixed-oxide fuels for thermal reactors are most frequently prepared from mechanically blended PuO2 and UO2 powders. Fuel pellets, fabricated by dry powder preparations, cold pressing, sintering, and grinding to size, are encapsulated in Zircaloy tubes, which are then assembled into bundles as required for each reactor. Alternate mixed-oxide fuel fabrication techniques include preparation of coprecipitated UO2-PuO2 powders, binder addition by a wet process, hot pressing, and the use of packed-particle rather than pelletized fuels. Packed-particle fuel materials that have been utilized were prepared by a high energy pneumatic impaction process, a sol-gel process, or by cold pressing and sintering. Such fuel materials are packed in rods by either a vibratory compaction or a swaging process. A quality assurance program is required which covers all planned actions necessary to provide the degree of confidence needed to ensure that the fuels meet or exceed the requirements of design specifications.