ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
G. Riel, W. M. Hawkins, Jr., G. H. Liebler, D. Duffey
Nuclear Technology | Volume 17 | Number 3 | March 1973 | Pages 275-279
Technical Paper | Instrument | doi.org/10.13182/NT73-A31270
Articles are hosted by Taylor and Francis Online.
An automatic radioactivity monitor for gamma rays was operated continuously for three months in the cooling water discharge canal of Consolidated Edison’s Indian Point Plant No. 1. The reliable performance, and particularly the observed sensitivity, indicated the feasibility of this system for automatically recording the radioactive content of environmental water. A similar system was later installed and is being operated routinely as a final check of the plant’s radioactive waste system. The 5-in.-diam × 4-in.-high NaI(Tl) underwater detector used was calibrated with 75 radioactive waste discharges (measured by other means) as standards. The counting efficiency was thereby determined to be 0.26 ± 0.09 counts/sec/pCi/liter. The computed lower limit of detection, for 95% confidence, 5% false alarm, with a 300-sec integration and 10-count/sec background, was 3 pCi/liter.