ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
G. Jansen, D. D. Stepnewski
Nuclear Technology | Volume 17 | Number 1 | January 1973 | Pages 85-95
Technical Note | Fuel | doi.org/10.13182/NT73-A31259
Articles are hosted by Taylor and Francis Online.
The hypothetical accident approach to analysis of fast reactors has been applied to the meltdown of an entire core and its interaction with containment floor materials of construction. The objective has been to show that penetration can be limited by the use of low melting point fluxing materials and thermal insulation at the pool boundaries. The growth of a hemispherical molten pool composed of fuel dissolved in molten basalt is predicted by a model that includes fuel solubility, internal convection in the pool, and transient conduction into the surrounding solid. Core sizes ranging from 3000 to 20 000 kg were investigated. Tentative conclusions are: A molten pool formed by reactor fuel debris can be shown to reach a manageable limiting size rather than penetrating to an indefinite distance in an uncontrolled manner. The use of sacrificial materials in which fuel is soluble reduces pool temperatures by diluting fission product decay heat generators and increasing heat transfer surface. During the first 100 to 200 h after meltdown the storage of heat in the molten pool can reduce the fission product heat that appears in the overlying sodium pool by 50 to 75%, The use of refractory insulation can reduce the pool size and still maintain temperatures beyond the refractory boundaries at values compatible with ordinary containment structural materials.