ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Candidates for leadership provide statements: ANS Board of Directors
With the annual ANS election right around the corner, American Nuclear Society members will be going to the polls to vote for a vice president/president-elect, treasurer, and members-at-large for the Board of Directors. In January, Nuclear News published statements from candidates for vice president/president-elect and treasurer. This month, we are featuring statements from each nominee for the Board of Directors.
G. Jansen, D. D. Stepnewski
Nuclear Technology | Volume 17 | Number 1 | January 1973 | Pages 85-95
Technical Note | Fuel | doi.org/10.13182/NT73-A31259
Articles are hosted by Taylor and Francis Online.
The hypothetical accident approach to analysis of fast reactors has been applied to the meltdown of an entire core and its interaction with containment floor materials of construction. The objective has been to show that penetration can be limited by the use of low melting point fluxing materials and thermal insulation at the pool boundaries. The growth of a hemispherical molten pool composed of fuel dissolved in molten basalt is predicted by a model that includes fuel solubility, internal convection in the pool, and transient conduction into the surrounding solid. Core sizes ranging from 3000 to 20 000 kg were investigated. Tentative conclusions are: A molten pool formed by reactor fuel debris can be shown to reach a manageable limiting size rather than penetrating to an indefinite distance in an uncontrolled manner. The use of sacrificial materials in which fuel is soluble reduces pool temperatures by diluting fission product decay heat generators and increasing heat transfer surface. During the first 100 to 200 h after meltdown the storage of heat in the molten pool can reduce the fission product heat that appears in the overlying sodium pool by 50 to 75%, The use of refractory insulation can reduce the pool size and still maintain temperatures beyond the refractory boundaries at values compatible with ordinary containment structural materials.