ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
J. L. Stringer, R. R. Bourassa, G. J. Dau
Nuclear Technology | Volume 17 | Number 1 | January 1973 | Pages 71-78
Technical Paper | Technique | doi.org/10.13182/NT73-A31256
Articles are hosted by Taylor and Francis Online.
To evaluate the combined effects of radiation-induced conductivity and radiation-induced currents cm dc readout errors as a function of radiation and temperature, an equivalent dc circuit has been used for a coaxial cable in a reactor core. Experimentally obtained data are used in this circuit to estimate readout errors as a function of source impedance and source output voltage for radiation and temperature fields of 5 × 109 R/h and 650°C. Results indicate that in this radiation temperature environment there will be no significant errors from a voltage source with output >10 mV for a cable-sensor combination under these conditions:
It is also found that (a) radiation-induced conductivity of powdered MgO changes linearly with dose rate to at least 9 × 1010 R/h, and (b) magnitude and polarity of radiation-induced currents are independent of temperature.