ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Judge temporarily blocks DOE’s move to slash university research funding
A group of universities led by the American Association of Universities (AAU) acted swiftly to oppose a policy action by the Department of Energy that would cut the funds it pays to universities for the indirect costs of research under DOE grants. The group filed suit Monday, April 14, challenging a what it termed a “flagrantly unlawful action” that could “devastate scientific research at America’s universities.”
By Wednesday, the U.S. District Court judge hearing the case issued a temporary restraining order effective nationwide, preventing the DOE from implementing the policy or terminating any existing grants.
Kemal O. Pasamehmetoglu, Gordon J. Willcutt, Jr., Jay S. Elson, Donald A. Siebe
Nuclear Technology | Volume 132 | Number 1 | October 2000 | Pages 3-14
Technical Paper | Accelerator Applications | doi.org/10.13182/NT00-A3125
Articles are hosted by Taylor and Francis Online.
The thermal-hydraulic design of the accelerator production of tritium (APT) tungsten neutron source is presented. A carefully engineered thermal-hydraulic design is required to remove the deposited power effectively during normal operations and remove the decay power during plant shutdown and postulated accidents. For steady-state operations and operational and anticipated transients, the design criterion is to maintain single-phase flow conditions with a margin to onset of nucleate boiling. The margin is determined based on phenomenological and geometric uncertainties associated with the design. A large margin to thermal excursion limits, such as critical heat flux and onset of flow instability, also is maintained during normal operations. In general, a very robust thermal-hydraulic design can be accomplished using the traditional models and correlations available in the engineering literature. However, two issues require further attention: maintaining adequate flows in a parallel network of flow channels and minimizing the volume fraction of heavy water to maximize tritium production.The design uses ladderlike structures that contain clad tungsten cylinders in the rungs that have coolant supplied and removed by the vertical ladder rails. Because the power density drops in the beam direction, the thickness of the tungsten cylinders is increased with increasing beam penetration length. The cooling requirement is determined using a conservative criterion where the minimum wall subcooling inside the rungs is at least 40°C and the minimum Reynolds number is 6000. Initial flow distribution tests were conducted with a full-scale model of an APT ladder assembly based on a preliminary design. Flow distributions can be made more even by using a larger riser than downcomer and also by increasing the flow resistance across each rung. The calculations discussed assume nominal dimensions, even though the power deposition and removal use a conservative approach. The effect of manufacturing tolerances will be investigated in future research. Also, the applicability of the critical heat flux and onset of flow instability models to small coolant channels is being verified experimentally. Further design optimization will be possible when these studies are completed.