ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Candidates for leadership provide statements: ANS Board of Directors
With the annual ANS election right around the corner, American Nuclear Society members will be going to the polls to vote for a vice president/president-elect, treasurer, and members-at-large for the Board of Directors. In January, Nuclear News published statements from candidates for vice president/president-elect and treasurer. This month, we are featuring statements from each nominee for the Board of Directors.
J. R. DiStefano
Nuclear Technology | Volume 17 | Number 2 | February 1973 | Pages 127-142
Technical Paper | Material | doi.org/10.13182/NT73-A31239
Articles are hosted by Taylor and Francis Online.
The compatibility of three strontium compounds (SrTiO3, Sr2TiO4, and SrO) with three superalloys (Haynes alloy No. 25, Hastelloy C, and Type 316 stainless steel) was studied at 900 and 1100°C for periods up to 10 000 h. The Sr2TiO4 was compatible under all test conditions, and only slight reaction occurred between SrTiO3 and the three superalloys. A 2- to 4-mil reaction zone developed between SrO and both Haynes alloy No. 25 and Hastelloy C at 900°C. At 1100°C the reaction was more extensive and also occurred with Type 316 stainless steel; however, the reaction rates became negligibly slow after 5000 h. For commercially produced Hastelloy C or C-276, the reaction with SrO appears to be related to the presence of one or more intermetallic phases. In laboratory heats containing very low silicon but relatively high carbon or in those containing very high silicon, these intermetallics did not form and no attack was observed. A reduction in the room-temperature mechanical properties of Haynes alloy No. 25, Hastelloy C, and Type 316 stainless steel was noted after heat treating at 900 or 1100°C. A further reduction in ductility was found in some of the samples exposed to SrO.