ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The Frisch-Peierls memorandum: A seminal document of nuclear history
The Manhattan Project is usually considered to have been initiated with Albert Einstein’s letter to President Franklin Roosevelt in October 1939. However, a lesser-known document that was just as impactful on wartime nuclear history was the so-called Frisch-Peierls memorandum. Prepared by two refugee physicists at the University of Birmingham in Britain in early 1940, this manuscript was the first technical description of nuclear weapons and their military, strategic, and ethical implications to reach high-level government officials on either side of the Atlantic. The memorandum triggered the initiation of the British wartime nuclear program, which later merged with the Manhattan Engineer District.
J. R. DiStefano
Nuclear Technology | Volume 17 | Number 2 | February 1973 | Pages 127-142
Technical Paper | Material | doi.org/10.13182/NT73-A31239
Articles are hosted by Taylor and Francis Online.
The compatibility of three strontium compounds (SrTiO3, Sr2TiO4, and SrO) with three superalloys (Haynes alloy No. 25, Hastelloy C, and Type 316 stainless steel) was studied at 900 and 1100°C for periods up to 10 000 h. The Sr2TiO4 was compatible under all test conditions, and only slight reaction occurred between SrTiO3 and the three superalloys. A 2- to 4-mil reaction zone developed between SrO and both Haynes alloy No. 25 and Hastelloy C at 900°C. At 1100°C the reaction was more extensive and also occurred with Type 316 stainless steel; however, the reaction rates became negligibly slow after 5000 h. For commercially produced Hastelloy C or C-276, the reaction with SrO appears to be related to the presence of one or more intermetallic phases. In laboratory heats containing very low silicon but relatively high carbon or in those containing very high silicon, these intermetallics did not form and no attack was observed. A reduction in the room-temperature mechanical properties of Haynes alloy No. 25, Hastelloy C, and Type 316 stainless steel was noted after heat treating at 900 or 1100°C. A further reduction in ductility was found in some of the samples exposed to SrO.