ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Candidates for leadership provide statements: ANS Board of Directors
With the annual ANS election right around the corner, American Nuclear Society members will be going to the polls to vote for a vice president/president-elect, treasurer, and members-at-large for the Board of Directors. In January, Nuclear News published statements from candidates for vice president/president-elect and treasurer. This month, we are featuring statements from each nominee for the Board of Directors.
C. Lepscky, G. M. Testa, H. Hougaard, K. W. Jones
Nuclear Technology | Volume 16 | Number 2 | November 1972 | Pages 367-395
Technical Paper | Fuel | doi.org/10.13182/NT72-A31203
Articles are hosted by Taylor and Francis Online.
Two instrumented fuel assemblies, containing Zircaloy-clad UO2 fuel, namely IF A-132 (pellet, 95% TD, 10.0 wt% 235U) and IFA-133 (vibrocompacted powder, 85% TD, 10.0 wt% 235U) were irradiated in the Halden Boiling Water Reactor (HBWR) in Norway, in order to investigate the performance of fuel pins under central melting conditions; the maximum linear heat generation rate (LHGR) was about 1400 W/cm and the final burnup was 11 000 MWd/MTU. The initial molten zone covered about 35 and 65% of the fuel radius for the pelleted and vibrocompacted fuel, respectively. By means of the in-pile instrumentation, the dimensional changes vs generated power were recorded during irradiation. Furthermore through extensive postirradiation examinations the in-pile behavior of fuel and cladding was evaluated. In spite of incipient burnout condition, contact of molten or plastic fuel with the cladding, and localized overheating up to 900°C, the overall behavior gave no indication that irradiation to a higher burnup could not proceed satisfactorily. On the basis of this experiment it seems justified to assume that central fuel melting should not be considered as a primary constraint in the fuel design criteria.