ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
C. Lepscky, G. M. Testa, H. Hougaard, K. W. Jones
Nuclear Technology | Volume 16 | Number 2 | November 1972 | Pages 367-395
Technical Paper | Fuel | doi.org/10.13182/NT72-A31203
Articles are hosted by Taylor and Francis Online.
Two instrumented fuel assemblies, containing Zircaloy-clad UO2 fuel, namely IF A-132 (pellet, 95% TD, 10.0 wt% 235U) and IFA-133 (vibrocompacted powder, 85% TD, 10.0 wt% 235U) were irradiated in the Halden Boiling Water Reactor (HBWR) in Norway, in order to investigate the performance of fuel pins under central melting conditions; the maximum linear heat generation rate (LHGR) was about 1400 W/cm and the final burnup was 11 000 MWd/MTU. The initial molten zone covered about 35 and 65% of the fuel radius for the pelleted and vibrocompacted fuel, respectively. By means of the in-pile instrumentation, the dimensional changes vs generated power were recorded during irradiation. Furthermore through extensive postirradiation examinations the in-pile behavior of fuel and cladding was evaluated. In spite of incipient burnout condition, contact of molten or plastic fuel with the cladding, and localized overheating up to 900°C, the overall behavior gave no indication that irradiation to a higher burnup could not proceed satisfactorily. On the basis of this experiment it seems justified to assume that central fuel melting should not be considered as a primary constraint in the fuel design criteria.