ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Candidates for leadership provide statements: ANS Board of Directors
With the annual ANS election right around the corner, American Nuclear Society members will be going to the polls to vote for a vice president/president-elect, treasurer, and members-at-large for the Board of Directors. In January, Nuclear News published statements from candidates for vice president/president-elect and treasurer. This month, we are featuring statements from each nominee for the Board of Directors.
Lee A. James
Nuclear Technology | Volume 16 | Number 1 | October 1972 | Pages 316-322
Technical Paper | Reactor Materials Performance / Material | doi.org/10.13182/NT72-A31197
Articles are hosted by Taylor and Francis Online.
The fatigue-crack propagation behavior of 20% cold-worked Type 316 stainless steel was characterized over the temperature range 75 to 1300°F (24 to 704°C) using linear-elastic fracture mechanics. It was found that, at a given level of stress intensity factor, increasing the temperature produced a significant increase in the rate of fatigue-crack propagation. At 1000°F, decreasing the cyclic frequency tended to increase the crack growth rate. The data also suggest that, at a given temperature, the crack growth rate is slightly higher when the direction of crack extension is parallel to the rolling direction than when the crack extension is perpendicular to the rolling direction. Comparison with data for solution-annealed Type 316 fatigue-cycled under similar conditions indicates that, at a given temperature, cold working tends to increase the resistance to fatigue-crack propagation.