ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
Lee A. James
Nuclear Technology | Volume 16 | Number 1 | October 1972 | Pages 316-322
Technical Paper | Reactor Materials Performance / Material | doi.org/10.13182/NT72-A31197
Articles are hosted by Taylor and Francis Online.
The fatigue-crack propagation behavior of 20% cold-worked Type 316 stainless steel was characterized over the temperature range 75 to 1300°F (24 to 704°C) using linear-elastic fracture mechanics. It was found that, at a given level of stress intensity factor, increasing the temperature produced a significant increase in the rate of fatigue-crack propagation. At 1000°F, decreasing the cyclic frequency tended to increase the crack growth rate. The data also suggest that, at a given temperature, the crack growth rate is slightly higher when the direction of crack extension is parallel to the rolling direction than when the crack extension is perpendicular to the rolling direction. Comparison with data for solution-annealed Type 316 fatigue-cycled under similar conditions indicates that, at a given temperature, cold working tends to increase the resistance to fatigue-crack propagation.