ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
U.K.’s NWS gets input from young people on geological disposal
Nuclear Waste Services, the radioactive waste management subsidiary of the United Kingdom’s Nuclear Decommissioning Authority, has reported on its inaugural year of the National Youth Forum on Geological Disposal forum. NWS set up the initiative, in partnership with the environmental consultancy firm ARUP and the not-for-profit organization The Young Foundation, to give young people the chance to share their views on the government’s plans to develop a geological disposal facility (GDF) for the safe, secure, and long-term disposal of radioactive waste.
J. M. Steichen
Nuclear Technology | Volume 16 | Number 1 | October 1972 | Pages 308-315
Technical Paper | Reactor Materials Performance / Material | doi.org/10.13182/NT72-A31196
Articles are hosted by Taylor and Francis Online.
High strain rate tensile data have been obtained on Type 304 stainless steel which was irradiated in EBR-II to a maximum fluence of 0.7 × 1022 n/cm2 (E > 0.1 MeV) at a temperature of ∼950°F. Tests were performed over a range of strain rates from 3 × 10−5 to 1 × 101 sec−1 at 800 and 1000°F to provide mechanical properties information for safety analyses for the Fast Flux Test Facility. The results of these tests demonstrate that the strength of irradiated Type 304 stainless steel remains essentially constant with increasing strain rate and the ductility decreases with strain rate at a fluence of 0.2 × 1022 n/cm2 and increases with strain rate at a fluence of 0.7 × 1022 n/cm2.