ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
G. E. Russcher, A. L. Pitner
Nuclear Technology | Volume 16 | Number 1 | October 1972 | Pages 208-215
Technical Paper | Reactor Materials Performance / Material | doi.org/10.13182/NT72-A31187
Articles are hosted by Taylor and Francis Online.
Thirty-five sets of thermal reactor data were analyzed mathematically to derive a best fit function to predict gas release from boron carbide as a function of temperature, irradiation exposure, and material density. An exposure variable to account for difference in self-shielding in various reactor spectra was developed. The data used in the analysis included temperatures from 550 to 1200°F, irradiation exposures from 10 × 1020 to 31 × 1020 captures/g, and material densities of 2.0 and 2.5 g/cm3 (80 and 99% of the theoretical density). Within this range the function should predict gas release in all reactor spectra within the 20% estimated accuracy of the experimental data. Independent gas release data generated in fast and intermediate reactor spectra showed that the general form of the function is correct but that application to temperature conditions above the specified range may result in overestimates of gas release.