ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Candidates for leadership provide statements: ANS Board of Directors
With the annual ANS election right around the corner, American Nuclear Society members will be going to the polls to vote for a vice president/president-elect, treasurer, and members-at-large for the Board of Directors. In January, Nuclear News published statements from candidates for vice president/president-elect and treasurer. This month, we are featuring statements from each nominee for the Board of Directors.
G. E. Russcher, A. L. Pitner
Nuclear Technology | Volume 16 | Number 1 | October 1972 | Pages 208-215
Technical Paper | Reactor Materials Performance / Material | doi.org/10.13182/NT72-A31187
Articles are hosted by Taylor and Francis Online.
Thirty-five sets of thermal reactor data were analyzed mathematically to derive a best fit function to predict gas release from boron carbide as a function of temperature, irradiation exposure, and material density. An exposure variable to account for difference in self-shielding in various reactor spectra was developed. The data used in the analysis included temperatures from 550 to 1200°F, irradiation exposures from 10 × 1020 to 31 × 1020 captures/g, and material densities of 2.0 and 2.5 g/cm3 (80 and 99% of the theoretical density). Within this range the function should predict gas release in all reactor spectra within the 20% estimated accuracy of the experimental data. Independent gas release data generated in fast and intermediate reactor spectra showed that the general form of the function is correct but that application to temperature conditions above the specified range may result in overestimates of gas release.