ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
O. M. Stansfield
Nuclear Technology | Volume 16 | Number 1 | October 1972 | Pages 197-207
Technical Paper | Reactor Materials Performance / Material | doi.org/10.13182/NT72-A31186
Articles are hosted by Taylor and Francis Online.
Boronated graphites containing 22 to 43 wt% boron as B4C and representing current warm-pressing or extrusion technology were irradiated at 650 ± 100°C to fast-neutron fluences up to 7 × 1021 n/cm2 (E > 0.18 MeV). The irradiation caused an increase in thermal expansivity, a decrease in thermal conductivity, and an anisotropic dimensional change related to the preferred orientation of the graphite crystallites in the graphite matrix. Although irradiation-induced B4C swelling has been reported, the dimensional change in boronated graphite is not significantly influenced by that effect. Dimensional change in boronated graphite is controlled by the fast-neutron and 10B fission damage irradiation properties of the graphite-binder matrix. At a constant 10B-isotope concentration, the irradiation-induced dimensional change of the boronated graphite increases with increasing 10B-isotope enrichment of the boron in the B4C addition. This effect, which may result from more severe 10B fission fragment damage in the matrix surrounding 10B-enriched B4C, leads to distortion directly related to the 10B burnup gradient. The use of natural boron in the fabrication of boronated graphite results in dimensional changes independent of the 10B burnup gradient and correlated with fast-neutron fluence under HTGR service conditions.