ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Amazon provides update on its Washington project with X-energy
A year ago this month, Amazon led a $500 million investment in X-energy, alongside Citadel founder Ken Griffin, the University of Michigan, and other investors. In addition to that financing, Amazon pledged to support the development of an initial four-unit, 320-MW project with Energy Northwest in Washington state.
R. J. Beaver, A. E. Richt
Nuclear Technology | Volume 16 | Number 1 | October 1972 | Pages 187-196
Technical Paper | Reactor Materials Performance / Material | doi.org/10.13182/NT72-A31185
Articles are hosted by Taylor and Francis Online.
An experimental plate-type neutron absorber assembly containing 10B dispersed in Type 200 austenitic stainless steel was irradiated in the active lattice of the 10 MW-SM-1 Reactor for 1.2 full power years. The 10B was distributed in a concentration gradient, increasing from 1 wt% in the surface layer to a maximum of 3 wt% 0.024 in. below the surface, to ensure a uniform burnup of 10B atoms in each volume increment through an exposure to thermal neutrons resulting in an average 10B burnup of 20 at.%. Postirradiation evaluation did not reveal any significant dimensional changes or structural damage to the dispersions at this burnup, which is a demonstration that the use of the boron concentration gradient results in at least a fourfold increase in the reactor performance capability of plate-type neutron absorbers containing dispersions of 10B in stainless steel.