ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
R. J. Beaver, A. E. Richt
Nuclear Technology | Volume 16 | Number 1 | October 1972 | Pages 187-196
Technical Paper | Reactor Materials Performance / Material | doi.org/10.13182/NT72-A31185
Articles are hosted by Taylor and Francis Online.
An experimental plate-type neutron absorber assembly containing 10B dispersed in Type 200 austenitic stainless steel was irradiated in the active lattice of the 10 MW-SM-1 Reactor for 1.2 full power years. The 10B was distributed in a concentration gradient, increasing from 1 wt% in the surface layer to a maximum of 3 wt% 0.024 in. below the surface, to ensure a uniform burnup of 10B atoms in each volume increment through an exposure to thermal neutrons resulting in an average 10B burnup of 20 at.%. Postirradiation evaluation did not reveal any significant dimensional changes or structural damage to the dispersions at this burnup, which is a demonstration that the use of the boron concentration gradient results in at least a fourfold increase in the reactor performance capability of plate-type neutron absorbers containing dispersions of 10B in stainless steel.