ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Candidates for leadership provide statements: ANS Board of Directors
With the annual ANS election right around the corner, American Nuclear Society members will be going to the polls to vote for a vice president/president-elect, treasurer, and members-at-large for the Board of Directors. In January, Nuclear News published statements from candidates for vice president/president-elect and treasurer. This month, we are featuring statements from each nominee for the Board of Directors.
L. A. Neimark, J. D. B. Lambert, W. F. Murphy, C. W. Renfro
Nuclear Technology | Volume 16 | Number 1 | October 1972 | Pages 75-88
Technical Paper | Reactor Materials Performance / Material | doi.org/10.13182/NT72-A31177
Articles are hosted by Taylor and Francis Online.
Two stainless-steel-clad mixed-oxide fuel elements have been examined after irradiation in EBR-II to a burnup of 11 at.%. The comparison of fuel of low oxygen-to-metal (O/M) ratio (1.94 to 1.97) with fuel of high O/M ratio (1.99 to 2.00) indicated significant differences in fuel and fission-product behavior. The lower oxidizing potential of the low O/M ratio fuel generated no attack of the Type 316L cladding. This appeared to be related to the lack of oxidation and migration of fission-product molybdenum to the cladding surface. Carbide precipitation in the cladding also appeared to be a factor in the type of attack that occurred. Cesium, however, was mobile in both fuels. The separation of the fuel and cladding at high burnup is thought to be related to the deposition of Cs-Mo-O at the interface. In the low O/M ratio fuel, in which the molybdenum did not migrate to the interface, the fuel and cladding remained in contact. The diametral change in the low O/M ratio element, however, was less than in the high O/M ratio element, 3.55% compared with 4.60%. This lower deformation is attributed to greater internal swelling accommodation by the more plastic low O/M ratio fuel. The axial migration of cesium in the low O/M ratio element resulted in an apparently nondetrimental reaction with the UO2 blanket and insulator pellets.