ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
S. D. Harkness, R. Grappel, S. G. McDonald
Nuclear Technology | Volume 16 | Number 1 | October 1972 | Pages 25-35
Technical Paper | Reactor Materials Performance / Material | doi.org/10.13182/NT72-A31172
Articles are hosted by Taylor and Francis Online.
A model for the behavior of Type 304 stainless steel during fast-reactor irradiation has been developed into the computer program SCIM (Swelling and Creep of Irradiated Metals). The model incorporates recent concepts on high-temperature radiation damage into an analytical tool for predicting in-pile behavior of Type 304 stainless steel. Swelling rates are discussed in terms of the relative efficiencies of voids and dislocations as sinks. The calculation for the swelling rate shows it is at maximum when the sink efficiencies are equal. The dose dependence of swelling is found to be a function of the relative rates of void and dislocation loop formation. Saturation mechanisms are discussed with respect to their effect on the swelling rate. Saturation is favored by increased void number density and increased irradiation temperature. This results in a compromise between irradiation temperature and the expected void volume at saturation. Cold work is expected to be increasingly effective with increasing irradiation temperature. At 372°C the dose dependence of swelling in cold-worked material is expected to be much higher than for solution-annealed material because of the rapidly changing relative effectiveness of voids and dislocations as point-defect sinks. High number densities of incoherent precipitate should limit swelling at intermediate irradiation temperatures by forming a saturation microstructure at low void volumes. A climb-controlled in-pipe creep mechanism has been developed. The expression that results depends on the radiation-produced excess interstitial flux to glissile dislocations as the mechanism for enhanced in-pile creep. The glissile dislocations are created by the unfaulting of irradiation-produced interstitial dislocation loops. The principal obstacle is taken as dislocations pinned by the void structure. The maximum inpile creep rate is expected to occur at nearly the same temperature at which swelling is a maximum. The creep rate is expected to decrease slowly with dose.