ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Judge temporarily blocks DOE’s move to slash university research funding
A group of universities led by the American Association of Universities (AAU) acted swiftly to oppose a policy action by the Department of Energy that would cut the funds it pays to universities for the indirect costs of research under DOE grants. The group filed suit Monday, April 14, challenging a what it termed a “flagrantly unlawful action” that could “devastate scientific research at America’s universities.”
By Wednesday, the U.S. District Court judge hearing the case issued a temporary restraining order effective nationwide, preventing the DOE from implementing the policy or terminating any existing grants.
E. E. Bende
Nuclear Technology | Volume 131 | Number 3 | September 2000 | Pages 279-296
Technical Paper | Fission Reactors | doi.org/10.13182/NT00-A3117
Articles are hosted by Taylor and Francis Online.
This work presents the temperature reactivity effects occurring in pebbles of a high-temperature reactor fueled with reactor-grade plutonium, without any additional resonance absorbers. Burnup calculations are performed for pebbles loaded with various amounts of plutonium per pebble. During burnup, branching calculations are carried out to calculate k as a function of the uniform temperature. For a high plutonium mass per pebble and low burnup values, k decreases with uniform temperature, which indicates a negative uniform temperature coefficient of reactivity (UTC). However, for a low plutonium mass per pebble, as well as for a high plutonium mass per pebble in combination with high burnup, k is maximal at a particular uniform temperature. Below this temperature, the UTC is positive, while above this temperature it is negative. Branching calculations with only a varying moderator temperature show almost the same behavior, which indicates that the contribution of the fuel temperature plays a minor role for the mentioned effect. To understand the reactivity effect, the moderator temperature coefficient (MTC) is investigated by two methods. In the first method, changes in reaction rates of individual nuclides and their corresponding contributions to the MTC are calculated, whereas in the second method the four-factor formula has been used. For the fresh fuel cases, the positive coefficient at low temperature is due to a positive coefficient for the thermal utilization factor. For high moderator temperatures, the coefficient for the resonance escape probability renders the MTC negative. This trend is basically caused by the shift of the high-energy tail of the Maxwell-spectrum toward the 1-eV resonance of 240Pu, and toward the resonances of 241Pu, which leads to an increase of the capture-to-fission ratio.