ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
P. Grillo, G. Mazzone
Nuclear Technology | Volume 15 | Number 1 | July 1972 | Pages 25-35
Technical Paper | Reactor | doi.org/10.13182/NT72-A31159
Articles are hosted by Taylor and Francis Online.
Single- and two-phase pressure drop measurements have been carried out on a 6 × 6 rod bundle at 70 atm. Single-phase measurements have been performed with a subcooling ranging from 100 to 5°C and at mass velocities comprised between 0.5 × 106 and 3.3 × 106 lb/(h ft2). Two-phase measurements have been performed at steam qualities ranging from 3 to 20% and at mass velocities comprised between 0.5 × 106 and 2 × 106 lb/(h ft2). From the measured pressure drops, the bundle friction factor and the loss coefficient for each bundle component (bottom plate, spacer, and upper plate) have been determined. Single-phase results show that Moody’s curve for friction losses and Kays’ coefficients for form losses lead to predicted pressure drops in good agreement with the experimental ones. The two-phase loss coefficients of the spacer and the bottom plate have been compared to the slip model prediction. If, for each component, an ad hoc choice of the slip ratio is made, the calculated values can be matched to the experimental ones with good accuracy. In addition, two-phase friction losses have been calculated on the basis of the Martinelli-Nelson, Becker, and Baroczy correlations with a resulting good agreement between the predictions of the last correlation and the experimental data.