ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
R. M. Brugger
Nuclear Technology | Volume 15 | Number 1 | July 1972 | Pages 14-24
Technical Paper | Reactor | doi.org/10.13182/NT72-A31158
Articles are hosted by Taylor and Francis Online.
Anticipating that a laser-induced fusion reaction will eventually be achieved, the potential of such a system as a source of thermal neutrons is considered. This source should provide bursts of thermal neutrons which would be at least three orders of magnitude more intense for time-of-flight experiments than are the best existing neutron source. The major limiting factor appears to be the shock produced when each pellet reacts; this shock must be contained within the target room and should not destroy the moderators. Estimates indicate that this shock can be controlled. Consideration has also been given to moderator design, shielding, beam tube windows, and backgrounds.