ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
M. D. Freshley, E. A. Aitken, D. C. Wadekamper, R. L. Johnson, W. G. Lussie
Nuclear Technology | Volume 15 | Number 2 | August 1972 | Pages 239-248
Technical Paper | Plutonium Utilization in Commercial Power Reactors / Reactor | doi.org/10.13182/NT72-A31148
Articles are hosted by Taylor and Francis Online.
Transient tests were conducted on nonirradiated oxide pellet-containing fuel pins at SPERT to investigate the possible effects of large single 550-μm diam PuO2 particles on transient behavior. Results show that the effect of the large PuO2 particles was to reduce slightly the cladding failure threshold energy from the range of 225 to 274 cal/g of fuel to the range of 200 to 213 cal/g of fuel. Clad perforation occurs by localized melting caused by the expulsion of PuO2 particles through the cladding. The presence of single 550-μm diam PuO2 particles in mixed-oxide fuels does not appear to affect significantly the cladding failure threshold energy from that of mixed-oxide fuels with the normal PuO2 particle size and distribution. Therefore, product specifications which limit the maximum PuO2 particle size to 550-μm diam in mixed-oxide fuels do not appear warranted from the standpoint of transient fuel performance considerations.