ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Dong H. Nguyen, Robert G. Bennett
Nuclear Technology | Volume 14 | Number 3 | June 1972 | Pages 284-291
Technical Paper | Instrument | doi.org/10.13182/NT72-A31118
Articles are hosted by Taylor and Francis Online.
A crystal detector system, composed of a small LiI(Eu) crystal, highly enriched in 6Li, and a flexible light pipe, has been used to determine the fast- and thermal-neutron distributions resulting from a Pu-Be neutron source. The thermal-neutron flux is determined by the cadmium difference technique. It is found that the thermal flux thus determined agrees well with the two-group diffusion solution and with absolute foil measurement, but gamma-ray backgrounds cause serious problems in the fast flux determination by crystal. It is also found that the non-rigid light pipe offers a great deal of flexibility in the measuring process. The high efficiency in thermal-neutron measurement obtained (41%) implies that smaller crystals or longer light pipes can be used, thereby improving the accessibility of the detector. The crystal detector used is also sufficiently sensitive to follow the small change in flux magnitude with increasing temperature.