ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Dong H. Nguyen, Robert G. Bennett
Nuclear Technology | Volume 14 | Number 3 | June 1972 | Pages 284-291
Technical Paper | Instrument | doi.org/10.13182/NT72-A31118
Articles are hosted by Taylor and Francis Online.
A crystal detector system, composed of a small LiI(Eu) crystal, highly enriched in 6Li, and a flexible light pipe, has been used to determine the fast- and thermal-neutron distributions resulting from a Pu-Be neutron source. The thermal-neutron flux is determined by the cadmium difference technique. It is found that the thermal flux thus determined agrees well with the two-group diffusion solution and with absolute foil measurement, but gamma-ray backgrounds cause serious problems in the fast flux determination by crystal. It is also found that the non-rigid light pipe offers a great deal of flexibility in the measuring process. The high efficiency in thermal-neutron measurement obtained (41%) implies that smaller crystals or longer light pipes can be used, thereby improving the accessibility of the detector. The crystal detector used is also sufficiently sensitive to follow the small change in flux magnitude with increasing temperature.