ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
2024: The Year in Nuclear—April through June
Another calendar year has passed. Before heading too far into 2025, let’s look back at what happened in 2024 in the nuclear community. In today's post, compiled from Nuclear News and Nuclear Newswire are what we feel are the top nuclear news stories from April through May 2024.
Stay tuned for the top stories from the rest of the past year.
Afroza Shelley, Hiroshi Akie, Hideki Takano, Hiroshi Sekimoto
Nuclear Technology | Volume 131 | Number 2 | August 2000 | Pages 197-209
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT00-A3111
Articles are hosted by Taylor and Francis Online.
To compare the once-through use of U-free fuels for plutonium burnup in light water reactors (LWRs), plutonium transmutation, minor actinide (MA) and long-life fission product (LLFP) buildup and radiotoxicity hazards were compared for PuO2 + ZrO2 (rock-like oxide: ROX) and PuO2 + ThO2 (thorium oxide: TOX) fuels, loaded in a soft-to-hard neutron spectrum LWR core (a moderator-to-fuel volume ratio Vm/Vf is from 0.5 to 3.0). For better understanding and proper improvement of the reactivity coefficient problem of ROX, the fuel temperature coefficient, the void coefficient, and the delayed neutron fraction were also studied. A mixed-oxide (MOX)-fueled LWR was considered for reference purposes.From the result of the cell burnup calculation, ROX fuel transmutes 90% of net initially loaded weapons-grade Pu, and 2.5% of initially loaded Pu is converted to MAs when Vm/Vf is 2.0 and discharge burnup in effective full-power days is equivalent to that of 33 GWd/t in MOX fuel. Reactor-grade Pu-based ROX fuel transmutes 80% of net initially loaded Pu, and 6.7% of initially loaded Pu converts to MAs with the same condition as the weapons-grade Pu ROX fuel. TOX fuel also has a good Pu transmutation capability, but the 233U production amount is approximately a half of the fissile Pu transmutation amount. The MA production amount in TOX fuel is lower than that in MOX and ROX fuels. The LLFP production amount in ROX fuel is lower than that in MOX and TOX fuels. The radiotoxicity hazard of ROX spent fuel is lower compared to that in TOX and MOX spent fuels.The thermal neutron energy region is important in ROX fuel for fuel temperature coefficient and void coefficient problems. From these calculations, 15 to 20% 232Th-added ROX fuel seems the best to use as a once-through Pu-burning fuel compared to TOX and MOX fuels in conventional LWRs, because of its higher Pu transmutation, lower radiotoxicity hazard.