ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
R. N. Anderson, N. A. D. Parlee
Nuclear Technology | Volume 13 | Number 3 | March 1972 | Pages 297-300
Technical Note | Chemical Processing | doi.org/10.13182/NT72-A31085
Articles are hosted by Taylor and Francis Online.
A nitride-fueled nuclear reactor is proposed in which the fission products are selectively removed from the reactor in a liquid alloy, and makeup fuel added during operation. The concept is based on the behavior of the nitrogen-nitride equilibria in liquid fuel-tin alloy systems where an actinide nitride fuel in contact with liquid metal alloy will reversibly form or dissolve depending on the temperature, the nitrogen pressure on the system, and the fuel content of the alloy. Consequently, controlling the temperature and the nitrogen pressure over the solid nitride fuel-liquid alloy phases will result in a critical mass of nitride being maintained and the fission products that form being dissolved in the liquid alloy above it. The liquid alloy phase may be removed, the fission products eliminated, and the alloy recycled to the reactor with or without makeup fuel additions.