ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
J. A. Donovan, D. T. Rankin, J. E. Stuckey, P. K. Smith, W. R. McDonell
Nuclear Technology | Volume 13 | Number 3 | March 1972 | Pages 273-283
Technical Paper | Material | doi.org/10.13182/NT72-A31082
Articles are hosted by Taylor and Francis Online.
No reaction was observed between B-type 244Cm2O3 and tungsten, molybdenum, or rhenium matrices in cermet compacts fabricated by cold pressing and sintering at temperatures up to 1850°C. Reaction was observed, however, between the oxide and tantalum matrices sintered as low as 1400°C. Cold pressing and sintering at the highest temperatures produced generally well-consolidated Cm2O3 refractory metal compacts of 85% or greater theoretical density. In compacts produced from well-mixed powders, the oxide was distributed uniformly in the metal matrix with little vaporization loss of Cm2Os.