ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Harold E. Clark, Grover Tuck
Nuclear Technology | Volume 13 | Number 3 | March 1972 | Pages 257-263
Technical Paper | Chemical Processing | doi.org/10.13182/NT72-A31080
Articles are hosted by Taylor and Francis Online.
An empirical formula has been developed for the criticality specialist who does not have readily available a computer that calculates the individual cylinder diameter for a critical uranyl nitrate solution slab-cylinder system. The formula is used to calculate the criticality condition for an accidental leak in an array of fissile-containing vessels which forms a solution slab under the array. The critical system consisted of a square array of 1, 4, 9, or 16 vertical, equal-diameter cylinders resting on and interacting with a horizontal slab. Both the array and the slab were filled with ∼495 g U/liter uranyl nitrate solution with the uranium enriched to 93.2 wt% 235U. The empirical formula, which predicts the critical unit cylinder diameter of the slab-array system, is where Da is the critical unit cylinder diameter of the array alone at 500 g U/ liter. The independent variables are the number of cylinders, N; the edge-to-edge spacing between nearest neighbored cylinders in cm, S; the array solution height in cm, H; the solution concentration in g U/liter, C; and the solution slab thickness in cm, T. The calculated unit cylinder diameter, Ds, in cm, is within ±11% of the experimentally measured diameter for 65 critical slab-array systems. This accuracy is sufficient for calculating the accident condition for nuclear safety purposes. Monte Carlo calculations were performed on some typical experimental configurations. The average keff ranges from 0.977 ± 0.017 to 0.996 ± 0.012. By increasing the slab thickness by the experimental error, the low keff was increased to 0.998 ± 0.012.