ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
E. Rolstad, K. D. Knudsen
Nuclear Technology | Volume 13 | Number 2 | February 1972 | Pages 168-176
Technical Paper | Fuel | doi.org/10.13182/NT72-A31051
Articles are hosted by Taylor and Francis Online.
Fuel performance studies at the Halden reactor have given valuable information on how various design parameters affect the mechanical interaction between fuel and cladding. The experiments have also indicated how the interaction is dependent on burnup and on the actual power history of the fuel rod. This information was obtained by means of differential transformer type of detector, measuring the changes in length and diameter of fuel rods while operating at power in the reactor. Based on this experience, a simple graphical model has been proposed for the prediction of interaction between fuel and cladding as a function of power history and bumup. This concept, referred to as “iso-gap curves,” clearly demonstrates the importance of avoiding an increase in power at high burnup and could be useful when planning reactor operations with respect to fuel management schemes, i.e., power changes, control rod movement, fuel shuffling, and loading.