ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reboot: Nuclear needs a success . . . anywhere
The media have gleefully resurrected the language of a past nuclear renaissance. Beyond the hype and PR, many people in the nuclear community are taking a more measured view of conditions that could lead to new construction: data center demand, the proliferation of new reactor designs and start-ups, and the sudden ascendance of nuclear energy as the power source everyone wants—or wants to talk about.
Once built, large nuclear reactors can provide clean power for at least 80 years—outlasting 10 to 20 presidential administrations. Smaller reactors can provide heat and power outputs tailored to an end user’s needs. With all the new attention, are we any closer to getting past persistent supply chain and workforce issues and building these new plants? And what will the election of Donald Trump to a second term as president mean for nuclear?
As usual, there are more questions than answers, and most come down to money. Several developers are engaging with the Nuclear Regulatory Commission or have already applied for a license, certification, or permit. But designs without paying customers won’t get built. So where are the customers, and what will it take for them to commit?
E. Rolstad, K. D. Knudsen
Nuclear Technology | Volume 13 | Number 2 | February 1972 | Pages 168-176
Technical Paper | Fuel | doi.org/10.13182/NT72-A31051
Articles are hosted by Taylor and Francis Online.
Fuel performance studies at the Halden reactor have given valuable information on how various design parameters affect the mechanical interaction between fuel and cladding. The experiments have also indicated how the interaction is dependent on burnup and on the actual power history of the fuel rod. This information was obtained by means of differential transformer type of detector, measuring the changes in length and diameter of fuel rods while operating at power in the reactor. Based on this experience, a simple graphical model has been proposed for the prediction of interaction between fuel and cladding as a function of power history and bumup. This concept, referred to as “iso-gap curves,” clearly demonstrates the importance of avoiding an increase in power at high burnup and could be useful when planning reactor operations with respect to fuel management schemes, i.e., power changes, control rod movement, fuel shuffling, and loading.