ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
J. P. McBride, K. H. McCorkle, Jr., W. L. Pattison, B. C. Finney
Nuclear Technology | Volume 13 | Number 2 | February 1972 | Pages 148-158
Technical Paper | Chemical Processing | doi.org/10.13182/NT72-A31049
Articles are hosted by Taylor and Francis Online.
Urania sol is used for preparing uranium oxide microspheres for nuclear reactor fuels. A new process for producing concentrated, 1 M U or more, crystalline urania sols by solvent extraction has been developed. This process is based on a time-temperature conductivity-controlled extraction of nitric acid from a hydrolyzing U(IV) nitrate-formate solution using an amine-in-hydrocarbon extractant. The sols contain predominantly crystalline urania, and are more resistant to rapid, spontaneous gelation and other variations in properties than earlier sols made by solvent extraction. Also, earlier solvent extraction processes produced dilute (0.2-0.3 M U) sols that required concentration to 1 M before making the spheres. The preparation of a satisfactory sol depends on ensuring crystallization of the urania, minimizing uranium oxidation, and having a stable U(IV) nitrate-formate feed solution. Feed solutions were made by reducing uranyl nitrate-formate solution with platinum-catalyzed hydrogen at atmospheric pressure. The reduction requires vigorous agitation of the solution and continuous electrometric monitoring of the U(IV)/U(VI) redox potential to minimize harmful side reactions. The studies include both laboratory development and an engineering-scale demonstration.