ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Henry A. Putre
Nuclear Technology | Volume 12 | Number 2 | October 1971 | Pages 209-217
Technical Paper | Aerospace | doi.org/10.13182/NT71-A31028
Articles are hosted by Taylor and Francis Online.
The main problem for fluid mechanics analysis in the rocket engine is that of predicting the contained fuel mass for various propellant-to-fuel flow ratios. The analysis described here predicts a dimensionless measure of fuel mass called the fuel volume fraction. This analysis uses a coaxial free-jet computer code, and eddy viscosity equations developed for this code. The calculated variation of volume fraction with flow ratios, fuel radius, and fluid density is shown to be in general agreement with previous data. The analysis and the data predict that the required fuel volume fraction of 0.20 at the flow ratio of 50 can be obtained at a density ratio of 1.0 and a radius ratio of 0.7.