ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
Zhendong Liu, Raymond S. Dickson, Lawrence W. Dickson, Zoran Bilanovic, David S. Cox
Nuclear Technology | Volume 131 | Number 1 | July 2000 | Pages 22-35
Technical Paper | Reactor Safety | doi.org/10.13182/NT00-A3102
Articles are hosted by Taylor and Francis Online.
A direct-electric-heating (DEH) apparatus was developed to heat Zircaloy-sheathed irradiated fuel samples. The apparatus was used in the temperature gradient 1 (TG1) experiment to measure fission product releases from Zircaloy-sheathed irradiated Canada deuterium uranium (CANDU) UO2 fuel samples during fast temperature ramps in the presence of a radial temperature gradient in the fuel. The ohmic heating of the UO2, combined with surface heat removal by the surrounding helium coolant flow, produced a radial temperature profile that approximates the profile for fission- or decay-heated fuel.The 11 tests conducted in the TG1 experiment simulated various transient heating rates and high-temperature annealing conditions. The results indicate that the DEH technique can produce large radial temperature gradients and rapid heating rates. Ceramographic examinations showed columnar grain growth and evidence of UO2 melting. Chemical interactions between the tungsten electrodes and the UO2 were also observed. Releases of krypton, and release and redistribution of cesium were measured. Fission product release and redistribution results from some of the tests are also reported.The Kr measurements indicated that the amount of Kr released was highly dependent upon the peak dwell power: The higher the dwell power, the higher the cumulative release. The redistribution of cesium was mapped using emission gamma radiography of the fuel specimen after the test. Cesium was released from the center of the fuel sample where temperatures were the highest. A well-defined area was confirmed near the center where the Cs activity was depleted. The measured Kr releases were in good agreement with the Cs migration and release.