ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Candidates for leadership provide statements: ANS Board of Directors
With the annual ANS election right around the corner, American Nuclear Society members will be going to the polls to vote for a vice president/president-elect, treasurer, and members-at-large for the Board of Directors. In January, Nuclear News published statements from candidates for vice president/president-elect and treasurer. This month, we are featuring statements from each nominee for the Board of Directors.
F. Servais, P. Goldschmidt
Nuclear Technology | Volume 12 | Number 3 | November 1971 | Pages 290-297
Technical Paper | Fuel Cycle | doi.org/10.13182/NT71-A31009
Articles are hosted by Taylor and Francis Online.
A stochastic model is described which enables quantitative assessment of the efficiency of safeguards operations in reprocessing or fabrication plants. The a priori assumption, or “zero-hypothesis” is that there has been no diversion of fissile material, the inspector’s task being to invalidate it. To detect diversion, the inspector can resort to three criteria: The first criterion sets an upper bound M for the total mass uncertainty. When the latter reaches M, the inspector will take a plant-wide inventory. The second criterion enables the inspector to decide whether or not an estimated mass balance is compatible with the agreed model, and the third criterion connects the mass uncertainty to the time it lasts; moreover, it settles the number of strategic points within the plant. As an application of the mathematical model developed, systematic cheating strategies are studied. Under the rules assumed, a diverter will achieve maximum total withdrawal at minimum probability of being caught by following a strategy of erratic withdrawal and occasional reinsertion. This renders it necessary for the inspector to assess an upper limit to the positive mass balance, a quite unexpected result.