ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Candidates for leadership provide statements: ANS Board of Directors
With the annual ANS election right around the corner, American Nuclear Society members will be going to the polls to vote for a vice president/president-elect, treasurer, and members-at-large for the Board of Directors. In January, Nuclear News published statements from candidates for vice president/president-elect and treasurer. This month, we are featuring statements from each nominee for the Board of Directors.
Keith Woodard
Nuclear Technology | Volume 12 | Number 3 | November 1971 | Pages 281-289
Technical Paper | Reactor Siting | doi.org/10.13182/NT71-A31008
Articles are hosted by Taylor and Francis Online.
The atmospheric dispersion characteristics in the vicinity of a nuclear power plant are important in establishing criteria for safety features, reactor containment, and site boundaries so that there is reasonable assurance that radiation dose guidelines would not be exceeded should a major accident occur. Large quantities of meteorological data are now available from many sites which provide a good statistical base for evaluating the effect of local site weather conditions on the total dose risk. A model has been developed for determining dose level versus probability based on combining time variant weather data with the time variant fission product release following an accident. The results obtained using this model to evaluate several sites indicate that the probability of any individual receiving a dose in excess of regulatory guidelines is quite low, given that an accident has occurred and that the resulting fission product releases are evaluated using conservative AEC licensing assumptions. These results also show a large variation in dose among facilities at a given probability level. Other applications of this model for evaluating doses due to hydrogen purging, for predicting the most faborable time to make routine effluent releases, and for assessing total dose risk of a given site are also discussed.