ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Miguel Ceceñas-Falcón, Robert M. Edwards
Nuclear Technology | Volume 131 | Number 1 | July 2000 | Pages 1-11
Technical Paper | Reactor Safety | doi.org/10.13182/NT00-A3100
Articles are hosted by Taylor and Francis Online.
A new test platform for stability studies is presented that can be used to generate a power time series, which in turn may be used to validate the capability of boiling water reactor stability-monitoring algorithms. The thermal hydraulics for boiling channels are modeled and coupled with neutron kinetics to analyze the nonlinear dynamics of the closed-loop system. The model uses point kinetics to study core-wide oscillations, and it couples two time-domain calculations, for the fundamental and first harmonic modes, to study out-of-phase oscillations. The channel coolant flow dynamics is dominant in the power fluctuations observed by in-core nuclear instrumentation, and additive white noise is added to the solution for the channel flow in the thermal-hydraulic model to generate a noisy power time series. Autoregressive analysis performed with the computer-generated series agrees with the stability properties of the boiling channel. The operating conditions of the channel can be modified to accommodate a wide range of stability conditions.