ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Miguel Ceceñas-Falcón, Robert M. Edwards
Nuclear Technology | Volume 131 | Number 1 | July 2000 | Pages 1-11
Technical Paper | Reactor Safety | doi.org/10.13182/NT00-A3100
Articles are hosted by Taylor and Francis Online.
A new test platform for stability studies is presented that can be used to generate a power time series, which in turn may be used to validate the capability of boiling water reactor stability-monitoring algorithms. The thermal hydraulics for boiling channels are modeled and coupled with neutron kinetics to analyze the nonlinear dynamics of the closed-loop system. The model uses point kinetics to study core-wide oscillations, and it couples two time-domain calculations, for the fundamental and first harmonic modes, to study out-of-phase oscillations. The channel coolant flow dynamics is dominant in the power fluctuations observed by in-core nuclear instrumentation, and additive white noise is added to the solution for the channel flow in the thermal-hydraulic model to generate a noisy power time series. Autoregressive analysis performed with the computer-generated series agrees with the stability properties of the boiling channel. The operating conditions of the channel can be modified to accommodate a wide range of stability conditions.