ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
L. A. Lawrence, J. A. Christensen
Nuclear Technology | Volume 12 | Number 4 | December 1971 | Pages 367-374
Technical Paper | Fuel | doi.org/10.13182/NT71-A30986
Articles are hosted by Taylor and Francis Online.
For UO2-25 wt% PuO2, the quantity kdT was established at 49 ± 5 W/cm, where Ts = 700°C, k is the fuel thermal conductivity, and Ts and Tm refer to fuel surface and melt temperatures, respectively. This result is obtained from measurements on six individual fuel pins. Each pin was surrounded by a calorimeter consisting of a heavy-walled aluminum sleeve with thermocouples at two radial positions. Heat generation rates measured calorimetrically were supplemented by postirradiation bumup analyses for 140 Ba, 141 Ce, and 95Zr. Fuel pins were irradiated for 10 h at steady-state peak heat ratings after which they were rapidly quenched to preserve structures representative of peak power operation. Fractional fuel melting was correlated with heat rating and the correlation extrapolated to zero melting to yield melting heat rating. Flux depression corrections are required to apply these measurements, which were made in a thermal flux, to fast flux environments. These were obtained by measuring radial burnup profiles in several irradiated cross sections and numerically integrating the results.