ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Leading the charge: INL’s role in advancing HALEU production
Idaho National Laboratory is playing a key role in helping the U.S. Department of Energy meet near-term needs by recovering HALEU from federal inventories, providing critical support to help lay the foundation for a future commercial HALEU supply chain. INL also supports coordination of broader DOE efforts, from material recovery at the Savannah River Site in South Carolina to commercial enrichment initiatives.
L. A. Lawrence, J. A. Christensen
Nuclear Technology | Volume 12 | Number 4 | December 1971 | Pages 367-374
Technical Paper | Fuel | doi.org/10.13182/NT71-A30986
Articles are hosted by Taylor and Francis Online.
For UO2-25 wt% PuO2, the quantity kdT was established at 49 ± 5 W/cm, where Ts = 700°C, k is the fuel thermal conductivity, and Ts and Tm refer to fuel surface and melt temperatures, respectively. This result is obtained from measurements on six individual fuel pins. Each pin was surrounded by a calorimeter consisting of a heavy-walled aluminum sleeve with thermocouples at two radial positions. Heat generation rates measured calorimetrically were supplemented by postirradiation bumup analyses for 140 Ba, 141 Ce, and 95Zr. Fuel pins were irradiated for 10 h at steady-state peak heat ratings after which they were rapidly quenched to preserve structures representative of peak power operation. Fractional fuel melting was correlated with heat rating and the correlation extrapolated to zero melting to yield melting heat rating. Flux depression corrections are required to apply these measurements, which were made in a thermal flux, to fast flux environments. These were obtained by measuring radial burnup profiles in several irradiated cross sections and numerically integrating the results.