ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
M. A. Schultz, Wayne F. Eckley
Nuclear Technology | Volume 10 | Number 3 | March 1971 | Pages 380-390
Technical Paper | Education | doi.org/10.13182/NT71-A30971
Articles are hosted by Taylor and Francis Online.
In teaching the theory and operation of a pressurized water reactor (PWR), a method is developed which makes use of an analog computer primary-loop simulation; however, the secondary loop consists of a real steam turbine-generator set. The analog is fitted with a reactor kinetics network and a transport delay unit with memory capacitors. Potentiometer settings at the analog originate at the real turbine as temperatures and pressures of the saturated steam at. 215 psia. Students consult steam tables, Mollier charts, etc. to obtain correct values for points at the interface, secondary side of the heat exchanger. The “pinch point” concept of heat transfer is used to transfer data across the heat exchanger to the primary loop. The proper potentiometer settings at the analog result from this pinch point and the design criteria for half-load or full-load operating condition existing at the turbine. Two dynamic variations are made from the “steady-statec” half-load run. One of these is a “sudden” throttle opening at the turbine; the other is a “step” reactivity insertion made at the reactor (analog). Students make adjustments for the revised settings in both loops. The educational benefits resulting from this “50% simulate + 50% real turbine” method of instruction have proved to be very meaningful to students as well as gratifying to the instructor.