ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Candidates for leadership provide statements: ANS Board of Directors
With the annual ANS election right around the corner, American Nuclear Society members will be going to the polls to vote for a vice president/president-elect, treasurer, and members-at-large for the Board of Directors. In January, Nuclear News published statements from candidates for vice president/president-elect and treasurer. This month, we are featuring statements from each nominee for the Board of Directors.
H. O. Menlove, R. H. Augustson, Darryl B. Smith
Nuclear Technology | Volume 10 | Number 3 | March 1971 | Pages 366-379
Technical Paper | Analysis | doi.org/10.13182/NT71-A30970
Articles are hosted by Taylor and Francis Online.
A technique has been developed for the nondestructive assay of fissionable materials which makes use of the variations with energy in the fission cross section for a given isotope in order to produce a signature characteristic of that isotope. The technique consists of irradiating the sample with neutrons from an accelerator and measuring the delayed-neutron response from the induced fission reactions in the sample. Different neutron irradiation energies were obtained by surrounding a 14-MeV neutron source with various moderating assemblies. Assay results obtained using this delayed-neutron technique include the following: (a) uranium samples with enrichments ranging from ∼3 to 98%; (b) plutonium-uranium oxides; (c) 233u-232Th salt mixtures; (d) “spent” reactor fuel elements; and (e) scrap containers ranging in size from small vials to one-gallon cans containing plutonium or uranium scrap. In addition, measurements have been made on the influence of various nonfissionable matrix materials on the assay results.