ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reboot: Nuclear needs a success . . . anywhere
The media have gleefully resurrected the language of a past nuclear renaissance. Beyond the hype and PR, many people in the nuclear community are taking a more measured view of conditions that could lead to new construction: data center demand, the proliferation of new reactor designs and start-ups, and the sudden ascendance of nuclear energy as the power source everyone wants—or wants to talk about.
Once built, large nuclear reactors can provide clean power for at least 80 years—outlasting 10 to 20 presidential administrations. Smaller reactors can provide heat and power outputs tailored to an end user’s needs. With all the new attention, are we any closer to getting past persistent supply chain and workforce issues and building these new plants? And what will the election of Donald Trump to a second term as president mean for nuclear?
As usual, there are more questions than answers, and most come down to money. Several developers are engaging with the Nuclear Regulatory Commission or have already applied for a license, certification, or permit. But designs without paying customers won’t get built. So where are the customers, and what will it take for them to commit?
Charles Kelber
Nuclear Technology | Volume 10 | Number 1 | January 1971 | Pages 85-90
Technical Paper and Note | Technique | doi.org/10.13182/NT71-A30951
Articles are hosted by Taylor and Francis Online.
One of the methods considered for fuel assay in a nuclear safeguards program is analysis of reactivity response. For uranium-plutonium LMFBR fuels, such an assay is complicated by the similar response of the various fissile isotopes and the relatively large fast fission contribution from the fertile isotopes. The proposal is explored here to separate the responses, thereby promoting more accurate analysis, through design of an assay reactor which would be critical in two distinct modes having different spectra (hard and soft). The constraint is that the change in spectrum be obtained with little mechanical change in the system so as to avoid excessive reactivity renormalization. The solution examined here is a concept of a dilute fast spectrum fast reactor (zero-power) which is also critical when flooded with borated water. The response matrix is computed and the errors analyzed; problems in securing greater accuracy arise from the need to attain very low powers to measure spontaneous fission sources in the presence of fission product gammas, and the need for a better low-energy neutron filter than cadmium.